

Laboratory & Professional skills for Bioscientists Term 2: Data Analysis in R

One sample tests: one-sample *t*-test, paired-sample *t*-test and one-sample Wilcoxon

Summary of this week and next

- We will consider tests for one-, two- and paired-samples. These are the *t*-tests and their non-parametric equivalents. We will apply what we know about choosing appropriate tests
- Two lectures.

Overview of topics

Week	Торіс	
2	Introduction. Logic of hypothesis testing	
3	Hypothesis testing, variable types	Foundation
-		
4	Chi-squared tests	Hypothesis testing
5	The normal distribution, summary statistics and CI	Estimation
6 and 7	One- and two-sample tests (2 lectures)	
8	One-way ANOVA and Kruskal-Wallis	Hypothesis testing
9	Two-way ANOVA incl understanding the interaction	
10	Correlation and regression	

Lecture 2	1. Estimation
	– what is the mean of the population?
	2. Hypotheses testing
	e.g., is there a difference between 2 means (<i>t</i> -test)
	e.g., is the expected number of observations what
	we expect (chi-squared test)

"It's hard....."

Previous Learning Experience

Bloom's Taxonomy

Learning objectives for the 2 weeks

By actively following the lecture and practical and carrying out the independent study the successful student will be able to:

- Explain dependent and independent samples (MLO 2)
- Select, appropriately, *t*-tests and their nonparametric equivalents (MLO 2)
- Apply, interpret and evaluate the legitimacy of the tests in R (MLO 3 and 4)
- Summarise and illustrate with appropriate R figures test results scientifically (MLO 3 and 4)

Revision Lectures 1 and 2 Choosing tests

Regardless, the choice of statistic depends on

1. Type of data

The type of values a variable can take: <u>Discrete</u> or <u>continuous</u>?

2. Their role in the analysis

Which is the response and which is/are explanatory?

Choosing tests: 3 steps

- 1. What is a one sentence description of what you want to know?
- 2. What are your explanatory variables?
 - Categories: *t*-tests, ANOVA, Wilcoxon, Mann-Whitney
 - Continuous: Regression, correlation
- 3. What is your response variable?
 - Normally distributed: *t*-tests, ANOVA, regression
 - Counts: Chi-squared or stage 2 😳

Choosing tests: 3 steps

- 1. What is a one sentence description of what you want to know?
- 2. What are your explanatory variables?
 - Categories: *t*-tests, ANOVA, Wilcoxon, Mann-Whitney
 - Continuous: Regression, correlation
- 3. What is your response variable?
 - Normally distributed: *t*-tests, ANOVA, regression
 - Counts: Chi-squared or stage 2 😳

Types of *t*-test

- 1. One-sample
 - Compares the mean of sample to a particular value (compares the response to a reference)
 - Includes paired-sample test compares the mean difference to zero (i.e., compares dependent means)
- 2. Two-sample
 - Compares two (independent) means to each other

Student's t-test

'Student' was William Sealy Gosset

t-tests in general **Assumptions**

All *t*-tests assume the "residuals" are normally distributed and have homogeneity of variance

A residual is the difference between the predicted and observed value

Predicted value is the mean / group mean

t-tests in general: assumptions Checking Assumptions

- Common sense
 - Data should be continuous
 - No/few repeats
- Plot the residuals
- Using a test in R

t-tests in general: assumptions When data are not normally distributed

- Transform (not really covered)
 - E.g. Log to remove skew, arcsin squareroot on proportions
- Use a non-parametric test (covered)
 - Fewer assumptions
 - Generally less powerful

t-tests One-sample *t*-tests

We often want to know if the mean of a sample differs from some reference value

Comparing a measure of water quality to a reference value

Validating a method to determine Glucose concentration Confidence intervals: small samples

19 lactate dehydrogenase solutions to a recipe that should yield a concentration of 1.5 $\mu mols$ l^{-1}

How good is the recipe/ability to follow the recipe?

t-tests One-sample *t*-tests

Tests whether the mean of a single sample differs from an expected value (i.e., H_0)

- Example: Fields are sprayed if crop plants have a disease score* of 76.
- 20 plants in a field are measured
- Is their mean significantly different from the reference of 76?

One-sample t-tests - example

AndTwoS	ampleTests.Rmd	× 🛛 🖭 lect 05 of
(a.o.)	🖉 🛛 🖓 Filter	
*	score °	
1	76.11	
2	76.52	
3	83.37	
4	88.28	
5	83.67	
6	67,40	
7	75,43	
8	97.03	
9	75,46	
10	90,42	
11	99.30	
12	79.00	
13	85.55	
14	81.12	

One-sample *t*-tests - example

- H_0 : mean = 76 vs H_1 : mean \neq 76
- Standard formula for all *t*-tests $t = \frac{statistic - hypothesised value}{s.e.of statistic}$

• d.f.= n - 1

One-sample *t*-tests - example

• H_0 : mean = 76 vs H_1 : mean \neq 76

t-tests One-sample *t*-tests - example

Is the difference between the obtained value and the expected value big relative to the variability?

One-sample *t*-tests - example

Run the *t*-test

Manual:

t.test(x, y = NULL, alternative =
 c("two.sided", "less", "greater"), mu = 0,
 paired = FALSE, var.equal = FALSE, conf.level
 = 0.95, ...)

One-sample *t*-tests - example

```
t.test(data = score, score, mu = 76)
One Sample t-test
```

```
data: score
t = 2.517, df = 19, p-value = 0.02097
alternative hypothesis: true mean is not equal to 77
95 percent confidence interval:
77.80908 85.79692
sample estimates:
mean of x
81.803
```

One-sample t-tests - example

Checking the assumptions: normally and homogenously distributed residuals

One-sample *t*-tests - example

Checking the assumptions: normally and homogenously distributed residuals

One-sample *t*-tests - example

Reporting the result: "significance of effect, direction of effect, magnitude of effect"

The disease score for plants in this field $(\bar{x} = 81.2)$ is significantly higher than 76 (t = 2.52; d.f. = 19; p = 0.021).

Paired-sample *t*-tests

- Really a one-sample test
- Two samples but values are not independent (could not reorder)

Patient	Drug	Placebo	
1	14	18	
2	26	29	
3	21	24	
etc			

• N.b. not 'tidy' data

Paired-sample t-tests example

Same

student

Is there a difference between the maths and stats marks of 10 students?

The one sample is the difference between the pairs of values

n.b. tidy data

	subject ÷	mark
	subject	mark
1	maths	97
2	maths	58
3	maths	65
4	maths	65
5	maths	80
6	maths	48
7	maths	85
8	maths	63
9	maths	58
10	maths	98
11	stats	89
12	stats	49
13	stats	68
14	stats	70
15	stats	74
16	stats	30
17	stats	78
18	stats	69
19	stats	40
20	stats	85

26

Paired-sample *t*-tests - example

- H₀: mean difference = 0 vs H₁: mean difference ≠ 0
- Standard formula for all t-tests $t = \frac{statistic - hypothesised value}{s.e.of statistic}$

•
$$t_{[d.f]} = \frac{\overline{d}-0}{s.e. of \, \overline{d}}$$

d.f.= n − 1 (where n is the number of pairs)

t-tests Paired-sample *t*-tests

Run paired sample t-test

```
t.test(data = marks, mark ~ subject, paired = TRUE)
    Paired t-test
data: mark by subject
t = 2.3399, df = 9, p-value = 0.04403
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.2159788 12.7840212
sample estimates:
mean of the differences
```

Paired-sample t-tests - example

Checking the assumptions: normally and homogenously distributed residuals

t-tests Paired-sample *t*-tests

Reporting the result: "significance of effect, direction of effect, magnitude of effect"

Individual students score significantly higher in maths than in statistics (t = 2.34; d.f. = 9; p = 0.044) with an average difference of 6.5%.

t-tests Paired-sample *t*-tests: figure

When the *t*-test assumptions are not met: non- parametric tests

- Non-parametric tests make fewer assumptions
- Based on the ranks rather than the actual data

 Null hypotheses are about the *mean* rank (not the mean)

Non-parametric tests t-test equivalents

i,.e., the type of question is the same but the response variable is not normally distributed or it is impossible to tell (small samples)

- one sample *t*-test and paired-sample *t*-test: the one-sample Wilcoxon
- Two-sample *t*-test (next lecture): two-sample
 Wilcoxon aka Mann-Whitney

```
Non-parametric tests

one/paired-sample Wilcoxon

Marks – small sample.

Wilcoxon might be more appropriate

wilcox.test(data = marks, mark ~ subject, paired = TRUE)
```

Wilcoxon signed rank test with continuity correction

```
data: mark by subject
V = 48.5, p-value = 0.03641
alternative hypothesis: true location shift is not equal to 0
```

```
Warning message:
In wilcox.test.default(x = c(97L, 58L, 65L, 65L, 80L, 48L, 85L, :
    cannot compute exact p-value with ties
```

Non-parametric tests one/paired-sample Wilcoxon

Reporting the result: "significance of effect, direction of effect, magnitude of effect"

Individual students score significantly higher in maths than in statistics (Wilcoxon: V = 48.5; n = 10; p = 0.036) with a median difference of 7.5%.

Learning objectives for the week

By attending the lectures and practical the successful student will be able to

- Explain dependent and independent samples (MLO 2)
- Select, appropriately, *t*-tests and their nonparametric equivalents (MLO 2)
- Apply, interpret and evaluate the legitimacy of the tests in R (MLO 3 and 4)
- Summarise and illustrate with appropriate R figures test results scientifically (MLO 3 and 4)